Projets:Notaboo

De wikilab
Notaboo

Logonotaboov2.png

Informations
Description Un dispositif de "toilettes japonaises" portable constitué d'une petite pompe et d'un jet bien orienté !
Catégorie Motricité
Etat d'avancement En cours
Techniques
Durée de fabrication
Coût matériel
Niveau
Licence by-sa
Date de création 2022-10-18
Équipe
Porteur de projet Jérôme
Contributeurs Davidz, Perrine, Mireille, Gaël, Frédérique
Animateur ValentinMHK
Fabmanager Yo
Référent documentation Barth
Partenaires: Covéa
Nom humanlab Humanlab_MHK
Documentation
Statut de la documentation Partielle
Relecture de la documentation Non vérifiée

Description du projet

Description

"No Taboo" est un dispositif de "toilettes japonaises" portable et autonome que Jérôme développe depuis 2010. Il se compose d'un boîtier contenant une batterie lithium et son chargeur, une petite pompe à eau, et un contrôleur permettant d’actionner un cycle complet de rinçage en utilisant un unique bouton. Une bouteille d'un litre fait office de réservoir d'eau (remplissable au lavabo) et un support de buse clipsable sur n'importe quelle lunette de toilettes permet d'orienter précisément le jet.

Pour se rendre compte voici un lien vers la vidéo de mise en place : Notaboo

Schéma de principe

NoTaboo - Schéma de principe

Équipe

  • Jérôme : Porteur de projet
  • Mireille : Maman de Jérôme - Retraité
  • Valentin : Apprenti chez MHK - Bidouilleur, médiation numérique
  • Perrine : Ergothérapeute
  • Gaël : Bénévole chez MHK - Modélisation 3D
  • Frédérique : Direction engagement sociétale groupe Covéa
  • Yohann : Fabmanager MHK - Trouveur de solutions
  • Fabien : Designer
  • DavidZ : Programmeur
  • Barth : Floss Manuals - documentation


L'équipe (sans Fabien)

Résumé

Différents prototypes ayant déjà été développés pour répondre au besoin de Jérôme, le Fabrikarium ne démarre donc pas sur une page blanche.

Partant du retour d'expérience de Jérôme, et suivant son souhait de mettre au point une solution partageable et modulable, il s'agit à présent de repenser l'existant en open-source, et d'ouvrir la porte à une production et une diffusion commerciale - le principe du Do-It-Yourself atteignant ses limites pour des publics avec handicaps moteurs.

Les trois jours du Fabrikarium sont dédiés à la conception d'un nouveau prototype de boîtier, à la refonte du circuit électronique (entièrement remplacé par un Arduino associé à un Relay Shield), et à la réalisation d'un prototype de télécommande infrarouge. Une part du temps et de l'énergie de l'équipe est également mobilisée pour trouver dans le commerce un bidon adéquat et une nouvelle sacoche.

Le support de buse (actuellement fonctionnel) n'est pas traité, et la buse elle-même pourrait faire l'objet d'un futur atelier de prototypage.

Analyse de l'existant et liens utiles

Solutions commerciales

L'entreprise Resobain propose par exemple l'installation de WC Japonais à domicile, mais ces solutions ne sont absolument pas mobiles..

Des vidéos de présentation de solutions :

Des solutions plus légères et portables existent mais sont généralement inadaptées pour des PMR :

TOTO Travel WASHLET
Inadapté en terme de motricité fine
Bidet de voyage WOWER
Absolument pas ergonomique...
Bidet mécanique
Doit être raccordé à l'eau / non mobile
TOTO - Travel WASHLET Bidet de voyage WOWER Bidet mécanique

Dernière version du prototype (2018)

NoTaboo - Prototype 2018


Sac de transport actuel
Dimensions : L.26 x l.19 x h.27 cm
Support de buse
Repliable - Imprimé en 3D
NoTaboo - Sacoche NoTaboo - Support de buse en action

Diagnostic de l'existant

Points validés par l'expérience Problèmes décelés
  • Poids maximum (environ 1,5 kg)
  • Volume d'eau de 1,25L
  • Autonomie d'utilisation (testé en voyage)
  • Boutons manipulables
  • Débit (environ 1L/min)
  • Boîtier trop fragile (se casse facilement)
  • Difficile à transporter longtemps (poids)
  • Préhension difficile du boîtier + Boutons trop petits
  • Réservoir difficile à remplir (manque d'ergonomie)
  • Bouteille plastique qui s'écrase à la prise en main
  • Manque de stabilité du réservoir dans le boîtier (risque de renversement)
  • Puissance/pression du jet trop faible
  • Imprécision dans le réglage de l'angle du jet
  • Bruit de la pompe (manque de discrétion)

Cahier des charges

Fonctionnalités principales

Portabilité :

  • Dimensions actuelles : L.26 x l.19 x H.27 cm
  • Poids : 1kg max
  • Doit être contenu dans une besace à enfiler autour du cou


Autonomie :

  • Volume d'eau = 1 litre (minimum pour une utilisation)
  • Batterie pour une autonomie électrique d'une semaine minimum


Ergonomie (adaptée pour une motricité limitée) :

  • Doit pouvoir fonctionner sans être sorti du sac (boutons en façade sur le dessus)
  • Bouton de mise sous tension en retrait pour éviter un déclenchement intempestif
  • Prise jack magnétique pour la recharge de la batterie (préhension plus aisée)
  • Support de buse adaptable à tous types de cuvettes/lunettes de WC
  • Le réservoir d'eau doit être solide, stable, facilement préhensible (dimensions, poignée, rigidité)

Fonctionnalités secondaires

  • Discrétion maximale du niveau sonore de fonctionnement (pompe)
  • Déclenchement à distance par un·e aidant·e (télécommande IR)
  • Déclenchement via différents modèles de télécommandes filaires adaptables pour toutes PSH (pédale..)
  • Jet orientable (angle différent si homme 43° ou femme 53° d'inclinaison)
  • Réglage de la puissance du jet (débit actuel = environ 1L/min)

Les contraintes

  • Matériau et conception du boîtier résistant aux chocs
  • Étanchéité des parties électriques et sécurisation de la batterie (transport en avion...)
  • Vidange intégrale du circuit hydraulique après usage (pour éviter les gouttes)
  • Réservoir d'eau remplissable (doit passer sous un robinet de lavabo) et remplaçable (bouteille du commerce)

Déroulement du Fabrikarium

Entrée en matière

Après un tour de table de présentation de l'équipe, la première demie-journée est consacrée à l'analyse des prototypes amenés par Jérôme et des modifications qu'il souhaite effectuer. Le tableau blanc se remplit très vite, le projet s’avérant beaucoup plus vaste qu'il n'y parait, mais un cahier des charges détaillé se dessine sous le contrôle de Perrine qui valide les aspects ergonomiques.

Notes de brainstorming collectif Brainstorming en équipe

La décision est prise de démarrer en répartissant l'équipe sur trois objectifs :

  • La recherche d'un bidon adéquat pour le réservoir d'eau
  • La conception d'un nouveau boîtier
  • La remise à plat de la partie électronique

Le bidon et la besace

La recherche d'une bouteille répondant au cahier des charges constitue une contrainte de départ incontournable pour le design du boîtier. Dès le premier jour, Jérôme, Mireille et Frédérique explorent donc quelques supermarchés et reviennent avec un bidon d'assouplissant et une bouteille de lait chocolaté. Le choix est vite tranché, l'assouplissant l'emporte haut la main !

Après nettoyage, et une petite modification du goulot par Valentin, le bidon est mesuré sous tous les angles et modélisé en 3D par Fabien.

Le bidon
Référence commerciale + Modélisation 3D
Modification du goulot
Le bec verseur est découpé avec un cutter
Le bidon sélectionné et modélisé en 3D Petite modification du bidon

Le matin du dernier jour, alors que les dimensions du prototype sont fixées, l'atelier shopping repart en quête d'une nouvelle sacoche à bandoulière. Ce point n'est pas documenté car il semble que les marques et les modèles possibles ne manquent pas ! Le modèle dégoté correspond aux dimensions du boîtier et convient à Jérôme.

Conception d'un nouveau prototype de boîtier

La plupart des éléments électroniques qui composent le boîtier avaient été commandés en amont du Fabrikarium. Gaël peut donc rapidement les modéliser en 3D et poser ainsi les bases de la conception du boîtier.


Composants principaux à intégrer dans le boîtier


Une réflexion collective s'ouvre ensuite sur l'aménagement interne et la façade du futur boîtier, en prenant en compte les questions d'étanchéité et les contraintes d'ergonomie et de mobilité listée dans le cahier des charges.


Validation collective de l'agencement


Quelques croquis et tâtonnements 3D permettent de valider un agencement logique et de passer au prototypage concret.

Grandes lignes de l'agencement Disposition des éléments

Un premier test, à l'échelle 1/2 et découpé au laser, concrétise le principe global du design : des parois verticales en contreplaqué 3mm courbé, et 2 plateaux imprimés en 3D pour le couvercle et le fond du boîtier.

Découpe laser de la maquette du boîtier Maquette à l'échelle 1/2 des parois du boîtier

Une première version est modélisée au soir du deuxième jour, mais les longues durées d'impression 3D poussent à envisager la possibilité d'une version de démo uniquement en bois pour assurer la présentation finale du Fabrikarium.


Plateau supérieur du boîtier


Dernier jour, Fabien nous livre le plateau supérieur qu'il a imprimé chez lui dans la nuit. Il ne reste plus qu'à découper le fond et les parois au laser et à assembler. En parallèle l'impression 3D de la poignée modélisée par Fabien se termine à quelques heures à peine de la fin.

Modélisation de la poignée par Fabien Impression 3D de la poignée

Premier assemblage rapide du boîtier

Câblage, circuit électronique et code

C'est Yohann qui prend en charge la partie électronique en commençant par un reverse-engineering de l’existant. Le circuit actuel, conçu et réalisé à grands frais par un cabinet d'étude privé, s'avère très complexe et intègre des éléments intrigants (capteur gyroscopique...)

Un nouveau circuit est imaginé, intégrant un Arduino équipé d'un Relays Shield, pour permettre le contrôle de la pompe au moyen du seul bouton de déclenchement.


Refonte du circuit électronique existant


Un premier montage sur Bread Board permet de tester et valider le fonctionnement du circuit électronique.

Nouveau schéma électronique Test du circuit électronique

A quelques heures de la fin du Fabrikarium il faut encore finaliser un câblage fonctionnel et coder le programme Arduino pour exécuter la séquence suivante :

  • Mise sous tension de l'appareil (bouton 1)
  • Déclenchement de la séquence (bouton 2)
  • La pompe tourne et vide le réservoir vers la buse
  • La pompe s'inverse, et vide le restant d'eau de la tuyauterie vers le réservoir
  • Le système s’éteint et se met hors tension.


Yohann et David sur le code et le circuit


David est sur le coup, et le système finit par fonctionner au moment de quitter la salle pour la présentation finale du Fabrikarium. L'assemblage du boîtier et le câblage de l'électronique ne seront pas finalisés, mais suffisamment stables pour tenter une démonstration avec de l'eau pour la présentation finale.


Le schéma final de l'électronique réalisé par Valentin


Le schéma final de l'électronique réalisé par Valentin après le Fabrikarium

Télécommande infrarouge

Démontage de la télécommande standard

En parallèle, Valentin s'est emparé de la conception d'une télécommande infra-rouge permettant de déclencher le dispositif à distance. La partie électronique est récupérée dans une petite télécommande standard, et il s'agit surtout de produire un boîtier ergonomique intégrant un bouton d'arcade, le circuit électronique, et une pile 12V, le tout étanche et solide.


Un premier essai en contreplaqué découpé au laser, testé par Jérôme sous l’œil attentif de Perrine, ne convainc finalement pas. Trop de travail de finition et un manque de rigidité et d'étanchéité.


Premier essai de télécommande en découpe laser


Petit usinage manuel sur le boîtier


L’impression 3D paraît plus appropriée, en deux parties :

  • Un tube en plastique dur
  • Un capuchon en plastique souple


Un peu d'usinage manuel sera nécessaire pour ajuster l'assemblage, pris en compte dans la dernière version des fichiers.


Version finale de la télécommande, imprimée en 3D

Buse, support de buse et tuyaux plastiques

Si le temps du Fabrikarium n'a pas été suffisant pour explorer les problématiques autour de la buse et de son support, de nombreuses discussions permettent de lister les principaux points suivants :

  • La buse/gicleur est un composant difficile à trouver en pièce détachée (celle que Jérôme utilise a été récupérée sur un modèle de bidet commercial)
  • C'est une pièce assez complexe, questions d'hydraulique..


Buse / gicleur


  • Le support de buse actuel, pliable et imprimable en 3D, est fonctionnel
  • Il nécessite des patins antidérapants (imprimés en 3D) pour adhérer à la lunette des wc.
  • Le raccordement du tuyau constitue une partie sensible et fragile.
Support de buse ouvert Support de buse replié pour le rangement

Restitution / bêta-test

Le Fabrikarium s'achève par une démonstration à la volée devant l'ensemble des participants, où un tonnerre d'applaudissements vient saluer l'arrosage intempestif de Bérangère (au premier rang), et valider ainsi en grandes pompes le principe du nouveau prototype ! Juste à temps, mais ça marche !!! Il ne reste plus qu'à le terminer dans les semaines qui suivront.

Suspens avant de mettre en route la démonstration Tension palpable dans la salle

Matériel, coût et durée

Liste du matériel

Les lignes orangées ne sont pas ou mal référencées..

DÉSIGNATION Qté CARACTÉRISTIQUES LIEN COÛT
ÉLECTRONIQUE ≃ 130,00 €
RC batterie 11.1V
HRB Lipo 3S 5000mah 50C XT60
1 Dimensions : 155 x 48 x 24 mm
Poids : 376g
amazon.fr ≃ 50,00 €
Contrôleur de charge
Turnigy 12v 2-3S Basic Balance Charger
1 Dimensions : 74 x 50 x 25 mm
Poids : 46 g
hobbyking.com 5,27 €
Témoin de charge 1 3.7V / 7.4V / 11.1V / 14.8V
Indicateur de Batterie Li-po
banggood.com 7,79 €
Connecteur de charge magnétique 1 3 broches de contact à angle droit
Pas de 2,54 mm
gotronic.fr 7,95 €
Boutons poussoirs
Jeu d'arcade, avec lumière LED
2 Diamètre : 28 mm
Hauteur : 43 mm
alibaba.com 1,08 €
Arduino Uno Rev3 1 ATMega328 cadencé à 16 MHz
Dimensions : 68.6 x 53.4 mm
Poids : 25 g
arduino.cc 24,00 €
Arduino 4 Relays Shield
Maximum load voltage : 48 V
1 Dimensions : 68.5 x 53 mm
Poids : 44 g
arduino.cc 24,00 €
Connecteur télécommande 1 [] ??,?? €
Récepteur télécommande 1 RF sans fil pour télécommande 1527
433mhz - 4 canaux
aliexpress.com 1,07 €
Câble + Connecteurs ? [] ??,?? €
CIRCUIT HYDRAULIQUE ≃ 30,00 €
Pompe de transmission à carburant
MODELCRAFT - 12V 1,4A
1 Dimensions : 70 x 56 x 33 mm
Poids : 77g
Débit : 500 - 600 ml/min
conrad.fr 12,99 €
Bidon 1 "Kind par Nature" - Assouplissant Bio - 1 L [] 10,00 €
Tuyaux
APDatec PVC 840 cristal clair
Besoin : 1,8 m Diam. 4 mm - Ep. 1 mm - (100m = 25,04 €) outillage-industrie.com
apd-schlauchtechnik.de
≃ 0,50 €
Buse 1 [] ??,?? €
PARTIES MÉCANIQUES ≃ 40,00 €
Contreplaqué 5mm Dimensions : ? ??,?? €
Fil PLA impression 3D Longueur : ? ??,?? €
Fil TPU plastique souple impression 3D Longueur : ? ??,?? €
Vis 6 ? M? - ?? mm [] ??,?? €
Écrous 6 ? M? - ?? mm [] ??,?? €
Mastic de rebouchage ??,?? €
Peinture ??,?? €
ESTIMATION DU COÛT TOTAL ≃ 200,00 €

Outils nécessaires

Électronique

  • Fer à souder
  • Multimètre


Fabrication

  • Découpeuse laser
  • Imprimante 3D
  • Outils manuels : Tournevis, clés...
  • Spatule et pinceaux (pour la finition des parois)

Temps de fabrication

Les temps de fabrications ne sont pas encore documentés, à compléter lors de la finalisation future du prototype

Action Durée estimée
Impression 3D - Plateaux du boîtier ?? h
Impression 3D - Poignée ?? h
Impression 3D - Boîtier de télécommande ?? h
Impression 3D - Support de buse ?? h
Impression 3D - Patins du support de buse ?? h
Impression 3D - Capuchon de télécommande ?? h
Découpe laser - Parois du boîtier ?? h
Assemblage du boîtier ?? h
Soudures + câblage ?? h
Finitions d'étanchéité sur les parois ?? h
TOTAL ?? h

Fichiers source

Boîtier - Parois (découpe laser contreplaqué 3mm)


Boîtier - Impressions 3D


Télécommande - Impressions 3D

  • Modifiable : Modélisation télécommande - à compléter


Electronique - KiCad

Étapes de fabrication pas à pas

Le Fabrikarium n'a pas permis d'aboutir à une réalisation finalisée du prototype, les étapes de fabrications, particulièrement l'assemblage, le câblage et les finitions d'étanchéité ne peuvent donc pas faire l'objet d'une documentation complète pour le moment.

Cependant, voici les principales étapes de fabrication telles qu'imaginées, mais qui restent à faire et documenter

Fabrication du boîtier

  1. Impressions 3D : couvercle + fond + poignée + renfort central + connecteurs verticaux (x8)
  2. Découpe laser des parois du boîtier (contreplaqué 3mm)
  3. Assemblage sans l'électronique (vis)
  4. Enduit + peinture sur les parois en contreplaqué
  5. Ouverture du couvercle
  6. Assemblage des éléments de façade (boutons + voyants + connecteurs)
  7. Assemblage des éléments interne (batterie + pompe + contrôleur de charge + Arduino/Shield)
  8. Câblage et test du circuit
  9. Fermeture du couvercle


Éléments à imprimer en 3D pour le boîtier

Éléments imprimés en 3D


Principe d'assemblage

Assemblage des parties imprimées + vis Intégration des composants

Câblage & Code

Le schéma suivant doit être précisé pour détailler le câblage sur la carte Arduino :

Schéma de câblage à compléter

L'Arduino doit être programmé avec le code suivant :

//a 2022/10/22: use Arduino
//#include<stdio.h>

// define pin
// input
const int pin_bt_on  = 10;
const int pin_bt_start  = 5;

// output
const int pin_relay_pump1  = 4;
const int pin_relay_pump2  = 7;
const int pin_relay_power  = 8;
const int pin_led = 9;

// states
enum state {
  STATE_ON=10, STATE_JET, STATE_ASPI, STATE_OFF
  };

// define state buttons
bool bt_on  = LOW;
bool bt_start = LOW;

state nState = STATE_ON;
  
void setup() {
  // initialize pin
    Serial.begin(9600);
  pinMode(pin_relay_power, OUTPUT);
  digitalWrite(pin_relay_power, HIGH);
  pinMode(pin_relay_pump1, OUTPUT);
  digitalWrite(pin_relay_pump1, LOW);
  pinMode(pin_relay_pump2, OUTPUT);
  digitalWrite(pin_relay_pump2, LOW);
  pinMode(pin_bt_start,INPUT);
}

// the loop function runs over and over again forever
void loop() {
  Serial.println("I am LOOP\n");
  Serial.println((int)(nState), DEC);
 switch (nState) {
   case   STATE_ON:
          Serial.println("on");
          digitalWrite(pin_relay_power, HIGH);
          if(digitalRead(pin_bt_start)==LOW)
            nState=STATE_JET;
           break;
   case   STATE_JET: 
          digitalWrite(pin_relay_pump1, HIGH);
          digitalWrite(pin_relay_pump2, LOW);
          delay(6000);
          digitalWrite(pin_relay_pump1, LOW);
          digitalWrite(pin_relay_pump2, LOW);
          delay(2000);
          nState=STATE_ASPI;
           break;
   case   STATE_ASPI: 
          digitalWrite(pin_relay_pump2, HIGH);
          digitalWrite(pin_relay_pump1, LOW);
          delay(5000);
          nState=STATE_OFF;
           break;
   case   STATE_OFF:
          digitalWrite(pin_relay_pump2, LOW);
          digitalWrite(pin_relay_pump1, LOW);
          delay(5000);
          digitalWrite(pin_relay_power, LOW);
        break;
   default: Serial.println("I am default\n");
  }
  
  /*digitalWrite(LED_BUILTIN, HIGH);
      //digitalWrite(pin_led, HIGH);  // indicate via LED
  delay(100);
  digitalWrite(LED_BUILTIN, LOW);
  delay(500);*/
}

Télécommande

  1. Impression 3D du boîtier et de son capuchon
  2. Démontage de la télécommande commerciale (on ne garde que l'électronique)
  3. Montage de connecteurs sur deux câbles reliant le bouton poussoir au circuit électronique
  4. Soudure des câbles au circuit électronique
  5. Insertion du circuit et de la pile
  6. Connexion des câbles sur le bouton déclencheur (connecteurs)
  7. Insertion du bouton dans le boîtier (en force)
  8. Fermeture du capuchon

Fabrication du support de buse

Cette partie ne fait pas l'objet d'une documentation. Les points suivants sont à explorer :

  1. Impressions 3D : Support de buse + Embouts antidérapant
  2. Fixation de la buse ?
  3. Tuyauterie interne ?
  4. Système de charnière pour replier ?
  5. Fermeture du support - Vis ? Colle ?

Bilan

Avancées réalisées

Le Fabrikarium a permis de concevoir :

  • Un nouveau design de boîtier reproductible dans n'importe quel FabLab
  • Un circuit électronique + code fonctionnels
  • Une télécommande infra-rouge fonctionnelle

Reste à faire

Si les grandes lignes du nouveau design sont bien avancées, la version fabriquée lors du Fabrikarium est trop brute et nécessite une finition détaillée avant un nouveau tirage (Impression 3D + Découpe laser)

Le travail de finition sur les parois du boîtier (mastic + peinture) doit être fait et documenté pour pouvoir valider le prototype du boîtier.

La partie code du Arduino, si elle a fonctionné une fois, doit aussi faire l'épreuve du bêta-test pour éventuellement être un peu précisée.

La batterie présente sans doute un problème de sécurité (risque d'explosion, voyage en avion...) Un renfort de protection (en Kevlar par exemple) pourrait être une solution.

Une fois le prototype abouti, il faudra bien sûr le mettre en fonction en situation réelle, et rapporter les problèmes décelés en vue d'une version 2.

Pistes pour la suite

La réalisation d'une sacoche sur mesure pourrait faire l'objet d'un futur développement.

Il serait aussi intéressant de concevoir une version open-source de la buse et de son support, en s'appuyant sur l'existant, et en intégrant la possibilité de moduler la pression et l'orientation du jet.