Différences entre versions de « Projets:Machine a lire IA »
De wikilab
Ligne 47 : | Ligne 47 : | ||
==Fichiers source== | ==Fichiers source== | ||
− | <nowiki> | + | <nowiki> |
##Loading the necessary packages | ##Loading the necessary packages | ||
import cv2 | import cv2 |
Version du 19 octobre 2020 à 13:47
Description du projet
Le but est de créer une petite machine à lire portable capable d’acquérir le texte à partir d'une capture d'image et de le lire au moyen d’une synthèse vocale.
Cahier des charges
Pour une première version le texte est dactylographié .
L’utilisateur doit pouvoir :
- Déclencher l’acquisition de la page
- Lancer la lecture et la mettre en pause
- Régler la langue de l’OCR Français ou Anglais (pour une première version)
- Régler le niveau sonore du texte lu
- Régler le débit de la synthèse vocale
- Copier le texte lu dans le presse-papier
- L’envoyer par mail automatiquement à une adresse prédéfinie
- Atteindre une fenêtre de configuration si nécessaire
La solution doit être compacte basée sur une petite caméra reliée à un Raspberry PI 3 ou 4. Muni d’une batterie.
Les message audio seront émis :
- Soit par un petit HP intégré au boitier
- Soit via une oreillette sans fil
En option :
- il sera aussi possible de prévoir un support pour fixer la solution sur un support de bureau.
- La solution pourra permettre de lire une plaque de rue en condition de plein jour ou un nom de salle de réunion en intérieur
Analyse de l'existant
Équipe (Porteur de projet et contributeurs)
- Porteurs du projet : François LB
- Concepteurs/contributeurs : Mickaël Le Cabellec
- Animateur (coordinateur du projet) :
- Fabmanager référent :
- Responsable de documentation
Matériel nécessaire
Outils nécessaires
Coût
Délai estimé
Fichiers source
##Loading the necessary packages import cv2 import numpy as np import pytesseract from imutils.object_detection import non_max_suppression from matplotlib import pyplot as plt # Creating argument dictionary for the default arguments needed in the code. args = {"image": "../input/text-detection/example-images/Example-images/ex24.jpg", "east": "../input/text-detection/east_text_detection.pb", "min_confidence": 0.5, "width": 320, "height": 320} # Give location of the image to be read. # "Example-images/ex24.jpg" image is being loaded here. cv2.namedWindow("preview") vc = cv2.VideoCapture(0) if vc.isOpened(): # try to get the first frame rval, frame = vc.read() else: rval = False while rval: cv2.imshow("preview", frame) rval, frame = vc.read() key = cv2.waitKey(20) if key == 27: # exit on ESC break cv2.destroyWindow("preview") args['image'] = "../input/text-detection/example-images/Example-images/ex24.jpg" image = cv2.imread(args['image']) # Saving a original image and shape orig = image.copy() (origH, origW) = image.shape[:2] # set the new height and width to default 320 by using args #dictionary. (newW, newH) = (args["width"], args["height"]) # Calculate the ratio between original and new image for both height and weight. # This ratio will be used to translate bounding box location on the original image. rW = origW / float(newW) rH = origH / float(newH) # resize the original image to new dimensions image = cv2.resize(image, (newW, newH)) (H, W) = image.shape[:2] # construct a blob from the image to forward pass it to EAST model blob = cv2.dnn.blobFromImage(image, 1.0, (W, H), (123.68, 116.78, 103.94), swapRB=True, crop=False) # load the pre-trained EAST model for text detection net = cv2.dnn.readNet(args["east"]) # We would like to get two outputs from the EAST model. # 1. Probabilty scores for the region whether that contains text or not. # 2. Geometry of the text -- Coordinates of the bounding box detecting a text # The following two layer need to pulled from EAST model for achieving this. layerNames = [ "feature_fusion/Conv_7/Sigmoid", "feature_fusion/concat_3"] # Forward pass the blob from the image to get the desired output layers net.setInput(blob) (scores, geometry) = net.forward(layerNames) ## Returns a bounding box and probability score if it is more than minimum confidence def predictions(prob_score, geo): (numR, numC) = prob_score.shape[2:4] boxes = [] confidence_val = [] # loop over rows for y in range(0, numR): scoresData = prob_score[0, 0, y] x0 = geo[0, 0, y] x1 = geo[0, 1, y] x2 = geo[0, 2, y] x3 = geo[0, 3, y] anglesData = geo[0, 4, y] # loop over the number of columns for i in range(0, numC): if scoresData[i] < args["min_confidence"]: continue (offX, offY) = (i * 4.0, y * 4.0) # extracting the rotation angle for the prediction and computing the sine and cosine angle = anglesData[i] cos = np.cos(angle) sin = np.sin(angle) # using the geo volume to get the dimensions of the bounding box h = x0[i] + x2[i] w = x1[i] + x3[i] # compute start and end for the text pred bbox endX = int(offX + (cos * x1[i]) + (sin * x2[i])) endY = int(offY - (sin * x1[i]) + (cos * x2[i])) startX = int(endX - w) startY = int(endY - h) boxes.append((startX, startY, endX, endY)) confidence_val.append(scoresData[i]) # return bounding boxes and associated confidence_val return (boxes, confidence_val) # Find predictions and apply non-maxima suppression (boxes, confidence_val) = predictions(scores, geometry) boxes = non_max_suppression(np.array(boxes), probs=confidence_val) for (startX, startY, endX, endY) in boxes: # scale the coordinates based on the respective ratios in order to reflect bounding box on the original image startX = int(startX * rW) startY = int(startY * rH) endX = int(endX * rW) endY = int(endY * rH) # extract the region of interest r = orig[startY:endY, startX:endX] # configuration setting to convert image to string. configuration = ("-l eng --oem 1 --psm 8") ##This will recognize the text from the image of bounding box text = pytesseract.image_to_string(r, config=configuration) # append bbox coordinate and associated text to the list of results results.append(((startX, startY, endX, endY), text)) # Display the image with bounding box and recognized text orig_image = orig.copy() # Moving over the results and display on the image for ((start_X, start_Y, end_X, end_Y), text) in results: # display the text detected by Tesseract print("{}\n".format(text)) # Displaying text text = "".join([x if ord(x) < 128 else "" for x in text]).strip() cv2.rectangle(orig_image, (start_X, start_Y), (end_X, end_Y), (0, 0, 255), 2) cv2.putText(orig_image, text, (start_X, start_Y - 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) plt.imshow(orig_image) plt.title('Output') plt.show()